首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21581篇
  免费   2041篇
  国内免费   1095篇
工业技术   24717篇
  2024年   44篇
  2023年   286篇
  2022年   484篇
  2021年   616篇
  2020年   670篇
  2019年   600篇
  2018年   609篇
  2017年   805篇
  2016年   831篇
  2015年   892篇
  2014年   1376篇
  2013年   1415篇
  2012年   1484篇
  2011年   1622篇
  2010年   1241篇
  2009年   1361篇
  2008年   1178篇
  2007年   1346篇
  2006年   1192篇
  2005年   1013篇
  2004年   816篇
  2003年   761篇
  2002年   606篇
  2001年   537篇
  2000年   432篇
  1999年   376篇
  1998年   319篇
  1997年   338篇
  1996年   268篇
  1995年   246篇
  1994年   219篇
  1993年   150篇
  1992年   110篇
  1991年   99篇
  1990年   76篇
  1989年   74篇
  1988年   54篇
  1987年   41篇
  1986年   32篇
  1985年   19篇
  1984年   17篇
  1983年   19篇
  1982年   15篇
  1981年   2篇
  1980年   7篇
  1979年   7篇
  1975年   2篇
  1959年   3篇
  1958年   1篇
  1955年   2篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
1.
《Ceramics International》2021,47(21):30358-30366
Stereolithography-based 3D printing is a promising method to produce complex shapes from piezoceramic materials. In this study, LCD-SLA 3D printing was used to create lead-free piezoceramics based on barium titanate (BaTiO3, BT). Three types of BT powders (micron, submicron and nanoscale) were tested in LCD-SLA 3D printing, and a technique for the preparation of a ceramic slurry suitable for LCD-SLA printing has been developed. Using TGA-DSC analysis, the thermal debinding parameters to obtain crack-free samples were determined, followed by further sintering and the study of the piezoelectric properties (εr = 1965, d33 = 200 pC/N, tan = 1,7 %). The results of the study demonstrate high potential for the production of complex piezoceramic elements that can be used in aviation, in particular, aviation radio equipment; in the marine industry for transceiver modules of hydroacoustic antennas; and in the nuclear industry for pressure control sensors in the steam–water path.  相似文献   
2.
In this study, monolithic B4C and B4C-based ceramics incorporating FeNiCoCrMo dual-phase (FCC and BCC) high entropy alloys (HEAs) were produced by spark plasma sintering (SPS). The effect of additives on the densification behavior, mechanical properties, microstructures, and phase evaluation of the samples were investigated. X-ray analysis confirmed the existence of FCC structured HEA and depletion of BCC structured HEA, after high-temperature reaction between B4C-HEAs. The addition of HEAs enhanced the densification behavior by liquid phase sintering. Furthermore, hardness and fracture toughness values of the samples increased with increasing HEAs content. Fracture toughness and hardness values for all composites were higher than the monolithic B4C. A combination of the highest density (∼99.22 %) and the best mechanical properties (32.3 GPa hardness and 4.53 MPa m1/2 fracture toughness) was achieved with 2.00 vol.% HEA addition.  相似文献   
3.
海域试开采区域含水合物沉积物的粒度分析结果表明水合物沉积物骨架由粗、细颗粒混合构成,通过开展多组低温、高压三轴排水剪切试验研究细颗粒含量和密度对含甲烷水合物沉积物和无水合物沉积物的强度和变形特性的影响。试验结果表明,含水合物沉积物抗剪强度及剪胀性都随细粒含量提高而显著增强。这是由于细颗粒含量增加改变了颗粒间水合物的样貌和分布特征,形成了由水合物包裹着粗颗粒-细颗粒的团簇状集合体。然而,细颗粒含量对无水合物沉积物的强度和变形特性的影响却表现出相反趋势。另外,含水合物沉积物的剪胀关系可以使用修正剑桥模型中的剪胀关系式进行描述。结果表明,剪胀关系的拟合曲线依赖于水合物饱和度的大小。通过对比研究发现,天然水合物和实验室合成水合物试样在较高饱和度时的峰值摩擦角大小及其伴随水合物饱和度的增长趋势存在差异,这种差异主要来源于水合物在沉积物骨架颗粒孔隙中不同的赋存模式及分布特征。  相似文献   
4.
Based on the premise that large bubbles are removed in larger cyclones and small bubbles in smaller cyclones, a combined degassing cyclone with main and subsidiary chambers was designed to enhance liquid degassing. The pressure loss, liquid flow rate at the gas outlet, split ratio, gas flow rate at the liquid outlet, and degassing efficiency of the degassing cyclone were measured and calculated. Pressure loss correlations were established which relates the Euler number to the gas and liquid Reynolds numbers in the main chamber. Most cases exhibit a degassing efficiency greater than 0.998 when the liquid flow rate is more than 0.7 m3h?1. The contours of pressure loss, split ratio, and degassing efficiency provide an effective guidance for designing a degassing cyclone.  相似文献   
5.
Quantitative Risk Assessment (QRA) supports the development of risk-informed safety codes and standards which are employed to enable the safe deployment of hydrogen technologies essential to decarbonize the transportation sector. System reliability data is a necessary input for rigorous QRA. The lack of reliability data for bulk liquid hydrogen (LH2) storage systems located on site at fueling stations limits the use of QRAs. In turn, this hinders the ability to develop the necessary safety codes and standards that enable worldwide deployment of these stations. Through a QRA-based analysis of a LH2 storage system, this work focuses on identifying relevant scenario and probability data currently available and ascertaining future data collection requirements regarding risks specific to liquid hydrogen releases. The work developed consists of the analysis of a general bulk LH2 storage system design located at a hydrogen fueling station. Failure Mode and Effect Analysis (FMEA) and traditional QRA modeling tools such as Event Sequence Diagrams (ESD) and Fault Tree Analysis (FTA) are employed to identify, rank, and model risk scenarios related to the release of LH2. Based on this analysis, scenario and reliability data needs to add LH2-related components to QRA are identified with the purpose of improving the future safety and risk assessment of these systems.  相似文献   
6.
《Ceramics International》2022,48(22):33361-33372
Calcium phosphate cements (CPCs) have been increasingly used as synthetic bone substitutes for repair and regeneration of bone defects given their biocompatibility, resemblance to bone and malleability. Moreover, their use as local antibiotic delivery systems is of main interest against bone infections, avoiding the adverse effects of high dosages of conventional therapy. The main goals of this work were to improve the properties of a commercial CPC (Neocement®), turning it injectable, and to provide it with a new functionality as a drug delivery system able to ensure a sustained release of an antibiotic commonly used in orthopaedics (gentamicin sulphate, GS). For this, the influence of the liquid phase amount (%LP) and type of polymer contained in the formulation (chitosan, Chi, or hydroxypropyl methylcellulose, HPMC) on the basic properties of the material was evaluated. It was found that the formulation containing 42%LP + HPMC+1.87% wt GS was the best one. It showed suitable setting and mechanical properties, and injectability around 87% (much superior to the original Neocement®, with 31%). It ensured a sustained release of GS for at least 14 days, at antibacterial levels. The antibiotic released is highly effective against S. epidermidis, but also presents some antibacterial activity against S. aureus. The CPC revealed to be non-cytotoxic. Moreover, it demonstrated good flowability and connectivity with human cadaveric trabecular bone.  相似文献   
7.
更长的飞行时间是四旋翼无人机领域研究热点方向之一;在对实际飞行中瞬时消耗电流和电池电压数据的研究中发现,过大姿态角下电池电量消耗显著提升;为了延长飞行时间和提升电池电量使用效率,提出一种长续航飞行模式;在该模式下,基于现有的角速度串级PID姿态控制器,将飞行加速度的控制算法改为飞行速度控制,限制过大姿态角的操作;在无风、微风和强风环境下的飞行实验表明,长续航飞行模式比传统飞行方式飞行时间增加8%~20%;长续航飞行模式可广泛应用于多种无需快速变换飞行路径,但需要更长飞行时间的的应用场景中。  相似文献   
8.
The demand for clean energy use has been increasing worldwide, and hydrogen has attracted attention as an alternative energy source. The efficient transport of hydrogen must be established such that hydrogen may be used as an energy source. In this study, we considered the influences of various parameters in the transportation of liquefied hydrogen using type C tanks in shipping vessels. The sloshing and thermal flows were considered in the transportation of liquefied hydrogen, which exists as a cryogenic liquid at ?253 °C. In this study, the sloshing flow was analyzed using a numerical approach. A multiphase sloshing simulation was performed using the volume of fluid method for the observation and analysis of the internal flow. First, a sloshing experiment according to the gas-liquid density ratio performed by other researchers was utilized to verify the simulation technique and investigate the characteristics of liquefied hydrogen. Based on the results of this experiment, a sloshing simulation was then performed for a type C cargo tank for liquefied hydrogen carriers under three different filling level conditions. The sloshing impact pressure inside of the tank was measured via simulation and subjected to statistical analysis. In addition, the influence of sloshing flow on the appendages installed inside of the type C tank (stiffened ring and swash bulkhead) was quantitatively evaluated. In particular, the influence of the sloshing flow inside of the type C tank on the appendages can be utilized as an important indicator at the design stage. Furthermore, if such sloshing impact forces are repeatedly experienced over an extended period of time under cryogenic conditions, the behavior of the tank and appendages must be analyzed in terms of fatigue and brittle failure to ensure the safety of the transportation operation.  相似文献   
9.
研究了3种微通道板基底羟基化的方法,测量了羟基化处理后微通道板基底表面水接触角及通道端面的形貌变化,分析了各种方法中微通道板基底的亲水性和腐蚀情况。实验结果表明:氨水双氧水溶液对基体表面的亲水性能提升不大,NaOH溶液对基体有腐蚀作用,经食人鱼溶液处理的基体表面亲水性明显提高且无腐蚀作用。研究了微通道板在食人鱼溶液中的浸泡时间和浸泡温度对表面亲水性的影响。结果表明:随着浸泡温度的增加,微通道板表面水接触角先减小后增大,当温度为80℃时达到极小值,浸泡时间对微通道板表面的亲水性影响不大。最终确定了微通道板表面羟基化工艺:浸泡温度为80℃,静置时间为20~60 min。  相似文献   
10.
Hydrogenation of dibenzyltoluene (DBT) is of great significance for the application in liquid organic hydrogen carriers (LOHCs). We successfully develop Mg-based metal hydrides (Mg2NiH4, MgH2, and LaH3) reactive ball-milling for the hydrogenation of DBT. Mg-based metal hydrides milled with 500 min exhibit the best catalytic activity, the hydrogen uptake of DBT can reach 4.63 wt% at the first 4 h and finally achieve 5.70 wt% through 20 h, which is the first time to use hydrogen storage material as a catalyst for the hydrogenation of DBT. The excellent catalytic hydrogenation performance of Mg-based metal hydrides mostly originates from numerous catalytic activity centers formed at the surfaces of Mg2NiH4 nanoparticles in the MgH2 matrix. Inspired by this mechanism, more general metal hydrides can be explored for catalyzing the hydrogenation of LOHCs. The new application of Mg-based metal hydrides is beneficial to developing efficient LOHC based hydrogen storage systems and offers novel insights to hydride-based catalysts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号